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ABSTRACT

Data scarcity is a common problem related to aviation fuels.
Many studies are still developing predictive models to predict
aviation fuel properties using fuel composition to help in Sus-
tainable Aviation Fuels (SAF) certification. However, due to the
data scarcity, most of these models were trained using limited
experimental data and are prone to overfitting. To this end, we
utilize generative AI models as a data augmentation technique
to address the data scarcity of aviation fuels. The tabular data
of aviation fuels considered includes experimental data for fuel
composition and nine thermophysical properties. This data is
used to train ForestDiffusion, a recently developed diffusion gen-
erative Al model for tabular data generation without the need
for many training samples. The performance of ForestDiffu-
sion is compared with another simple model, Synthetic Minority
Oversampling TEchnique (SMOTE), that is commonly used as
a baseline. Different metrics are used to assess the quality of
the synthetic data generated by ForestDiffusion and SMOTE. Re-
sults showed that the simple model SMOTE provided better syn-
thetic data fidelity, diversity, and machine learning utility. Still,
it has lower real data privacy protection than ForestDiffusion,
making the latter a more desirable choice regardless of the ad-
vantages that SMOTE provided, and showing the importance of
considering multiple assessment metrics to have more balanced
performance conclusions.

Keywords: Generative Al, Diffusion Models, Forest Dif-
fusion, Sustainable Aviation Fuels

NOMENCLATURE

Roman letters

HOC Heat of Combustion [MJ/kg]
n Number of

Sp Smoke Point [mm]

T Temperature [°C]

Joint first authors
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Greek letters

o Synthetic data fidelity metric
B Synthetic data diversity metric
v Kinematic viscosity [mm?/s]

Superscripts and subscripts

10 10% of the distillate is collected
50 50% of the distillate is collected
90 90% of the distillate is collected
b Boiling point

f Flash point

fr Freezing Point

t noise level

noise duplicates of original

Abbreviations

ATJ  Alcohol To Jet

ASTM  American Society for Testing and Materials
CFM Conditional Flow Matching

DCR Distance to Closet Records

FAA Federal Aviation Administration

FT Fischer Tropsch

GAN Generative Adversarial Networks

GCxGC 2-dimensional Gas Chromatography
HEFA Hydroprocessed Esters and Fatty Acids
Gen-Al Generative Artificial Intelligence

MAPE Mean Absolute Percentage Error

ODE Ordinary Differential Equations

RP  Rocket Propulsion

SAF  Sustainable Aviation Fuels

Sos  Score-based oversampling

SMOTE Synthetic Minority Oversampling TEchnique
VAE Variational Auto Encoders

XGBoost Extreme Gradient Boosting

1. INTRODUCTION

Sustainable Aviation Fuels (SAF) serve as an immediate al-
ternative to conventional jet fuels to reduce the harmful emissions
of conventional jet fuels, including greenhouse gases and soot
[1]. SAF can be produced from different sustainable feedstocks
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like biomass, fatty acids, oils, corn, sugars, etc., using certified
technologies like Alcohol to Jet (ATJ) [2]. However, the pro-
duced SAF must be certified using the procedures identified by
the American Society for Testing and Materials (ASTM). The
first phase of the certification process includes reporting many
thermophysical properties of the produced SAF, like flash point
and distillation temperatures, and ensuring they meet the ASTM’s
identified constraints [3].

To this end, many predictive models were developed to help
predict SAF properties using the fuel composition as an input
to reduce the need for experiments to measure SAF properties.
These models include linear regression models [4, 5], partial
least squares [6, 7], and machine and deep learning models [8—
11]. However, all the models were trained using limited data
(fewer than 100 samples), and the models are prone to overfit-
ting. Additionally, the relevant aviation fuels data are rabular
data that include the fuel composition obtained by 2-dimensional
Gas Chromatography (GCxGC) and fuel properties. GCxGC
provides the weight of the many hydrocarbon classes in the avi-
ation fuel. The number of features that GCXGC can provide can
exceed 200, like the ones used in this study [8]. Accordingly, the
predictive models are highly prone to overfitting when the num-
ber of features is significantly higher than the number of training
samples [12].

The data ideally can be augmented by conducting more ex-
periments to measure the fuel composition and properties, which
are expensive and time-consuming. Alternatively, Generative
Artificial Intelligence (Gen-Al) can create quality synthetic data
that mimics the real data. A number of Gen-Al models were
developed for tabular data generation. The recent models include
Variational Auto Encoders (VAE) [13], Generative Adversarial
Networks (GAN) [14], transformers and Large Language Models
[15], and diffusion models [16].

Diffusion models have recently been gaining more attention
for Gen-Al tasks because of their advantages over other generative
models. Diffusion models are more stable than GAN models and
capture the full data distribution; more details can be found in
this review [17]. A number of diffusion models were developed
for tabular data generation. Among these models are Score-based
oversampling (Sos) [18], STaSy [19], Codi [20], TabDDPM [21],
and recently Forest-Diffusion [22] and TabSyn [23].

In this study, we will utilize diffusion models to create syn-
thetic aviation fuel data using real experimental data to overcome
the common aviation fuel data scarcity issue. We will consider
many fuel properties that ASTM requires, including kinematic
viscosity, distillation temperatures (10%, 50%, 90%), boiling
point, freezing point, flash point, heat of combustion, and smoke
point. The quality of the synthetic data will be assessed and
compared to the real data using high-order metrics that assess
synthetic data fidelity, diversity, and privacy. As another perfor-
mance metric, the synthetic data will be used to train a machine
learning model and compare its performance with the same ma-
chine learning model trained on real data, where both will be
tested on the same real data. This is crucial to develop more ac-
curate, well-trained predictive tools using abundant, high-quality
data.

Section 2 describes the dataset used in this study, the Gen-

Al models used to generate synthetic data, and the assessment
metrics of the synthetic data generated, Section 3 has the results
for the four assessment metrics considered (fidelity, diversity,
privacy, machine learning utility), and Section 4 contains the
conclusions of this study.

2. DATASET AND METHODS
2.1. Dataset Description

The dataset includes the fuel composition for aviation fuels
obtained by (GCxGC) as an input, and their properties as an
output, both obtained from the Federal Aviation Administration
(FAA) Alternative Jet Fuel Test Database (ASCENT) [24] and
data published by [11]. The datasets include various types of avi-
ation fuels, including conventional jet fuels (Jet A1, JP-5, JP-8),
Sustainable Aviation Fuels (HEFA, ATJ, FT), Rocket Propulsion
(RP) fuels, and blends (SAF/conventional and SAF/SAF).

The (GCxGC) data is used as an input and includes the
volume fraction of hydrocarbon families, including 1. alkylben-
zenes, 2. diaromatics, 3. cycloaromatics, 4. n-cycloalkanes, 5.
di-cycloalkanes, 6. iso-alkanes, and 7. n-alkanes. The volume
fraction of each family is distributed among classes classified
based on the number of carbon atoms. For example, the volume
of the diaromatics family is distributed among four classes: Cjg
to Ci4. Accordingly, the number of classes for the rest of the
families is shown in Table 1. The volume fraction of each class
is used as an input feature, and the total number of features is 64.
Some families, like tri-cycloalkanes and alkenes (olefins), are
dropped because their volume fractions for most of the fuels are
negligible (less than < 0.1%). We did this to reduce the number
of features because the number of samples is limited, as shown
in Table 2, and, hence, to minimize overfitting. Accordingly, the
sum of the volume fractions will not sum to 100% (most sum to
99%), so we normalized the fraction of the 64 classes to sum to
100%.

TABLE 1: THE HYDROCARBON FAMILIES AND CLASSES
CONSIDERED IN THIS STUDY. EACH CLASS RESEMBLES
AN INPUT FEATURE. THE TOTAL NUMBER OF FEATURES IS
64.

Family Classes (# Features)
alkylbenzenes C7-Ci6 (10)
diaromatics Ci0-Ci14 (5)
cycloaromatics Co-Ci5 (7)
n-cycloalkanes C7-Ci7 (11)
di-cycloalkanes Co-Cig (8)
iso-alkanes C7-Cis (12)
n-alkanes C7-Cy7 (1)

Table 2 shows the properties considered in this study and
the number of samples for each property. The samples of the
first four properties (v, HOC, T¢, Ty, ) were collected from both
ASCENT [24] and [11], and include RP fuel samples, while the
samples of the rest were collected from ASCENT. Each sample
contains the volume fractions of the classes shown in Table 1 and
the related property in Table 2.
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TABLE 2: PROPERTIES CONSIDERED IN THIS STUDY AND
THE NUMBER OF SAMPLES FOR EACH PROPERTY.

Property Number of Samples
Kinematic Viscosity (v) [mm?2/s] 145
Heat of Combustion (HOC) [MJ/kg] 144
Flash Point (77) [°C] 151
Freezing Point (Tf,) [°C] 136
Boiling Point (7p) [°C] 47
Smoke Point (Sp)[mm] 33
Distillation Temperature (Tg) [°C] 48
Distillation Temperature (Tsg) [°C] 48
Distillation Temperature (Tgg) [°C] 48

2.2. Diffusion Gen-Al Models

Diffusion Gen-AI Models are commonly used for image gen-
eration tasks and outperform VAE and GAN models. The studies
[18-23] also demonstrated the superior performance of diffusion
models over GAN and VAE models in tabular data generation.
The diffusion model training consists of two processes: (1) For-
ward diffusion model and (2) reverse denoising process. In the
forward process, the data is corrupted by gradually adding noise
to the original samples. In contrast, in the reverse process, the
diffusion model learns how to denoise the samples and generate
synthetic but realistic data [17].

The majority of the diffusion models for tabular data gener-
ation [18-21, 23] are based on deep networks, which are data-
hungry and require thousands of training data to perform well.
However, the number of samples shown in Table 2 is very lim-
ited, and such models are likely to fail if trained on this limited
data. Consequently, the ForestDiffusion model [22] that has been
developed recently is based on Gradient Boosting algorithms,
particularly, Extreme Gradient Boosting (XGBoost). Still, other
boosting algorithms like LightGBM and CatBoost can be used.
Such models (gradient boosting + diffusion) are less data-hungry
compared with the deep neural networks and less likely to overfit
[25, 26], making them more suitable for limited data applications
compared with neural network models. The ForestDiffusion uses
a diffusion process with Conditional Flow Matching (CFM). The
CFM uses Ordinary Differential Equations (ODESs) to obtain the
data distribution [27]. Neural networks ordinarily approximate
the solution of ODEs, but in ForestDiffusion, XGBoost is used
[22]. In this study, we will use ForestDiffusion to create synthetic
aviation fuel data, and the quality of the synthetic data will be as-
sessed using different metrics that will be defined next. Synthetic
Minority Oversampling TEchnique (SMOTE) is a common base-
line model used for comparison with other tabular data generative
models [21, 23]. SMOTE was introduced to address the class im-
balance in classification problems, where it creates synthetic data
for the class with fewer samples [28]. Accordingly, it can also
be used to generate synthetic tabular data by putting the real data
(both input and output) in class O and creating twice the amount
of random data and putting it in label 1, SMOTE will create syn-
thetic data for class 0 to balance the random data in class 1. This
simple interpolation model can quickly generate synthetic data
without the need for powerful computing resources, and since

it is an interpolative model, it is less sensitive to the data size.
While SMOTE is not a true generative model, its interpolation-
based approach provides a computationally cheap baseline for
fidelity-focused tasks, albeit at the cost of diversity and privacy.
It is commonly used as a baseline for performance comparison,
and it can provide synthetic data metrics comparable to the more
advanced Gen-Al models, as illustrated by [21] and [23].

2.3. Assessment Metrics
We will use four assessment metrics that are commonly used
to assess the quality of the synthetic data; these metrics are [17]:

1. Fidelity Metrics: These metrics are used to assess the
similarity between the synthetic data generated by the
Gen-Al model and the real data used to train the model.
a—Precision is a high-order fidelity metric that indicates
whether the synthetic data resembles the real one. This
metric has the range [0,1], where higher values are desir-
able and indicate more similarities between the synthetic
and real data.

2. Diversity Metrics: These metrics are used to assess to
which extent the synthetic data could capture the distribu-
tion of the real data. §-Recall is a popular diversity metric
that assesses the extent to which the synthetic data cov-
ers the distribution of the real data. Like a-Precision, the
values of B-Recall are in [0,1], where higher values are
desirable and indicate higher diversity captured from the
real data.

3. Privacy Metrics: The metric assesses whether the syn-
thetic data is randomly sampled according to the distribu-
tion density and not copied from the training data. Distance
to Closet Records (DCR) is a common metric to assess the
privacy protection of real data, where low values (close to
zero) of DCR are undesirable and indicate that the Gen-Al
is copying from the real data and violating its privacy.

4. Utility Metrics: Also known as machine learning effi-
ciency or utility. In this metric, both the real and synthetic
data are used to train a machine learning model and test
it on the same real data. As a result, the performance of
the machine learning trained on the synthetic data should
be comparable or even better than that trained on the real
data.

3. RESULTS AND DISCUSSIONS

The two key hyperparameters in Forestdiffusion Python
model are the number of noise levels (7;), and the number of
original data duplicates (n,ise¢). n; controls the level of noise
added to the original data, while 7,5, is used because gradient
boosting algorithms do not learn by batches like neural networks;
they use the whole dataset. According to the developers, in-
creasing both would give better performance, but this increase
is accompanied by a computing time increase [22]. We set n,
= 1,500 and n,,is5e = 2,000 - significantly higher than default
values (n; = 50, n,pise = 100) - to compensate for limited train-
ing data and high feature dimensionality (64 inputs). Pilot tests
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on viscosity confirmed these values improved machine learning
utility (a regression model gave better performance when trained
on synthetic data) by gradually increasing both parameters over
defaults, consistent with [22] observation that larger n:/n,qise
enhance sample quality at the cost of linear compute scaling.

It should be noted that testing different values using a grid
search will be very time-consuming for generative models, con-
sidering that we have nine aviation fuel properties shown in Table
2. 80% of the data were used to train ForestDiffusion model,
which generates the same number of synthetic samples. The
remaining 20% of the data are used for the machine learning
efficiency test. The computing time for forestdiffusion varies de-
pending on the number of samples, but the computing time ranges
from 1 hour to 3 hours for each property shown in Table 2 using
300/384 cores of two Dual-Thread AMD EPYC 9654 96-Core
Processors.

The input features are volume fractions of different hydro-
carbon classes, which sum to 100% as mentioned in Section 2.1.
While Forestdiffusion’s synthetic data did not strictly enforce this
constraint; the pre-normalization sums deviated by 6% or less on
average, indicating near-preservation of compositional structure.
Post-hoc normalization was thus applied to align synthetic data
with real-data characteristics, with negligible impact on metrics
(see Section 3.1).

3.1. Fidelity, Diversity, and Privacy Metrics

The synthetic data fidelity is assessed using the metric a-
Precision, diversity using -Recall, and privacy using DCR. The
metrics were calculated using 80% of the number of samples
given in Table 2 and the same number of synthetic data. The a-
Precision and B-Recall can be obtained using the Python package
Synthcity [29], while we followed the method used by [21] for
DCR.

Table 3 shows the three metrics to assess the synthetic data
generated by ForestDiffusion. For @-Precision, the values are
comparable for most properties, except for the smoke point (Sp),
which has the lowest metric. The values are comparable because
the input features are the same (GCXGC) and the only difference
is the output. The synthetic data of Freezing point Ty, has the
best fidelity score, while the worst one belongs to the smoke point
(Sp) synthetic data, as mentioned. The smoke point is a height in
mm and a crucial parameter to calculate the soot formation rate
[30]. The number of training samples is the lowest for Sp, but
this cannot explain the low fidelity score, because the diversity
(B-Recall) and privacy (DCR) metrics are the highest for Sp syn-
thetic data. Figure 1 shows the probability density plot of real
smoke point data and the synthetic data generated by ForestDif-
fusion. The mean and standard deviation of the synthetic data
(29.67+6.34) are comparable to those of real data (30.32+8.60),
which explains the high diversity metric. However, the difference
in the shapes of the density plot is notable and this is reflected
on the low fidelity metric. While the results follow the known
trade-off between fidelity and diversity, where the increase in
one is accompanied by the other [31], insufficient training sam-
ples can lead to misleading or overly optimistic metrics, where
more samples should be included for more robust conclusions.
This is related to the definition of precision and recall metrics,
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FIGURE 1: THE PROBABILITY DENSITY PLOT OF REAL
SMOKE POINT DATA (REAL) AND SYNTHETIC DATA GENER-
ATED BY FORESTDIFFUSION.

where the number of samples is a factor as illustrated by [31].
The Sp synthetic data has the best diversity and privacy metrics;
the worst diversity metric belongs to the distillation temperature
Ty (0.667). In contrast, the worst privacy metric belongs to the
synthetic data of the freezing point Ty, (0.491).

TABLE 3: THE METRICS TO ASSESS SYNTHETIC DATA FI-
DELITY (a-PRECISION), DIVERSITY (8-RECALL), AND PRI-
VACY (DCR) GENERATED BY FORESTDIFFUSION.

Property a-Precision [-Recall DCR

v 0.664 0.699  0.599
HOC 0.666 0.732  0.538
Ty 0.704 0.705 0.596
Ty, 0.735 0.722 0491
Ty 0.694 0.689  0.682
Sp 0.555 0.826  0.718
Tio 0.659 0.667  0.522
Tso 0.670 0.688  0.589
Too 0.646 0.712  0.553

Table 4 shows the three metrics of fidelity, diversity, and
privacy for synthetic data generated by SMOTE. Compared with
Table 3, SMOTE can provide comparable and even better fidelity
and diversity metrics than ForestDiffusion, and SMOTE can pro-
vide synthetic data within a few seconds. However, the common
drawback of the SMOTE model is the low privacy protection
of real data, as can be seen from the significantly lower DCR
values for most of the properties compared with ForestDiffusion,
as shown in Table 4. As a result, SMOTE is copying from the
real data more than sampling from a learned distribution, where
the usage of diffusion and other Gen-AI models becomes justi-
fiable. The low privacy protection of SMOTE was also noticed
by [21, 23]. The exception is the smoke point, but this high
DCR value is over-optimistic and likely due to the small sample
size. This shows the importance of considering multiple metrics
to assess the quality of synthetic data and justifies the need to
develop Gen-Al models for tabular data rather than using simple
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models like SMOTE, which preserves local fidelity but leaks real
data and violates its privacy. ForestDiffusion, on the other hand,
samples globally but may sacrifice fidelity for privacy.

TABLE 4: THE METRICS TO ASSESS SYNTHETIC DATA FI-
DELITY (a-PRECISION), DIVERSITY (8-RECALL), AND PRI-
VACY (DCR) GENERATED BY SMOTE.

Property a-Precision B-Recall DCR

v 0.830 0.796  0.357
HOC 0.751 0.806  0.326
T; 0.704 0.785  0.300
Ty, 0.729 0.777  0.360
Ty 0.650 0715  0.433
Sp 0.642 0.766  0.692
Tio 0.583 0711  0.494
Tso 0.524 0.671  0.404
Too 0.552 0.744  0.365

3.2. Machine Learning Utility (Efficiency)

Machine learning utility is the most important metric for
developing property prediction models. As mentioned, a ma-
chine learning model is trained using real and synthetic data,
where both are tested using the same real data. Accordingly, we
trained a CatBoost regression model [32], a gradient boosting
model commonly used for machine learning efficiency tests [26].
Hyperparameter tuning is performed using grid search on two
catboost parameters: number of iterations (trees) and the learn-
ing rate. The values considered for the number of iterations are
{50, 100, 200, 500, 1000, 2000, 5000}, while learning rate values
are {0.01, 0.1, 0.15, 0.2}. 80% of the real data is used to train
catboost (which were used before to train ForestDiffusion and
SMOTE). This is the "Real" case shown in the second column
of Table 5. For the "ForestDiffusion" and "SMOTE" columns,
catboost is trained using the same amount of synthetic data gen-
erated by these two models. The predictions for all three cases
were evaluated using 20% of the real data, and the metric used
is Mean Percentage Absolute Error (MAPE), where lower error
is desirable. Both catboost regression and grid search hyperpa-
rameter tuning were performed using the scikit-learn package in
Python 3.11.

Table 5 shows the MAPE for the three cases, and the numbers
in bold are the cases where the synthetic data is better than the
real one. For all cases except Sp, catboost trained by SMOTE
synthetic data has better metrics than ForestDiffusion and even
better metrics than the real case in predicting Heat of Combus-
tion (HOC), freezing point (7,), and distillation temperature 7.
The comparable performance to the Real case is expected since
SMOTE is more copying from the real data as indicated by the
low privacy metrics shown in Table 4. It can be seen that consid-
ering machine learning efficiency alone can be misleading, as the
numbers in Table 5 show that using the diffusion models in gen-
eral is unjustifiable for this case, and the simple model SMOTE
is enough. ForestDiffusion provides better metrics than the Real
case for the smoke point (Sp) only, but comparable performance
with a slight increase in MAPE between 0.05% - 3% for all other

TABLE 5: MAPE OF THE CATBOOST REGRESSION MODEL
TRAINED USING REAL AND SYNTHETIC DATA GENERATED
BY FORESTDIFFUSION AND SMOTE. THE NUMBERS IN
BOLD INDICATE THE CASES WHERE THE SYNTHETIC DATA
IS BETTER THAN THE REAL ONE.

Property  Real  ForestDiffusion SMOTE

v 7.068 9.763 8.667
HOC 0.272 0.321 0.263
Ty 4.805 6.198 5.919
Ty, 26.793 29.131 22.336
Ty 3.839 5.954 2.542
Sp 13.545 10.822 14.031
To 4.990 6.796 4.773
T50 6.508 7.301 6.924
Too 6.853 8.294 7.392

properties, which is a very good sign of the performance of the
Gen-Al model. The better performance of SMOTE than "Real"
on multiple properties is possibly due to the linear interpolation
done by SMOTE between the real data samples, reducing the im-
pact of the noise inherent in the real data [33], but again cannot
be used as a real generative model due to the data redundancy.

For cases like distillation temperature (7¢), the fidelity score
of data generated by SMOTE (0.583) is considerably lower than
that of kinematic viscosity (v, 0.830) as shown in Table 4. How-
ever, CatBoost trained by data generated by SMOTE gave better
performance than the real data for 779 while the synthetic data for
v did not, as shown in Table 5. This highlights that high synthetic
data fidelity or similarity to the real data is not always desirable
in the context of tabular data generation, especially in our case,
where machine learning utility is the most crucial aspect to de-
velop more reliable predictive models. More distributed synthetic
data (higher diversity metrics) compared with real data will help
the machine learning model to generalize better. The high fidelity
score can be desirable in image generation applications, where
synthetic images very similar to the real ones are desirable.

The major limitation of this work is the limited data used,
which prevents the training of other diffusion models and Gen-
Al models, including GAN and others. Such models require a
massive training sample size to perform well and may provide
metrics better than those shown in Table 3 for ForestDiffusion.

4. CONCLUSION

In this work, two Gen-Al models were used to generate
synthetic data to address the aviation fuels data scarcity problem.
ForestDiffusion provided a more balanced quality of synthetic
data compared with SMOTE, where ForestDiffusion provided
better real data privacy protection. SMOTE performed better in
fidelity, diversity, and machine learning utility measures, but had
low privacy protection for the real data. This highlights the need
to consider multiple metrics to assess the quality of the synthetic
data. For future work, we will work on a pipeline based on linear
blending rules to provide thousands of training data points to train
other diffusion models based on neural networks, with the goal
of getting better synthetic data quality for aviation fuels. The
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blending rules are used to predict aviation fuel properties using
the fuel composition obtained by GCxXGC as an input. We will
calibrate these rules using experimental data and then use them
to predict properties for thousands of random fuel compositions.
Then, we will use this data to train diffusion models with the
hope that they learn to generate realistic data that matches the
experimental one and provide better metrics.
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